
Recitation 12

November 12, 2015

Problem 1. Is the system Ax = b consistent for

A =


1 1 0
1 0 1
1 1 0
1 0 1

 and b =


1
2
3
4

 ?

Find all vectors x̂ ∈ R3 such that Ax̂ is the closest to b vector in Col(A).

Explain why you are not getting a unique x̂.
Solution:
Write the augmented matrix of the system Ax = b, and row reduce it. You get

1 1 0 |1
1 0 1 |2
1 1 0 |3
1 0 1 |4

 ∼


1 1 0 |1
1 0 1 |2
0 0 0 |2
0 0 0 |0


Since there is a pivot in the last column of augmented matrix, the system is inconsistent. Put simply, the
3rd row is the equation 0 = 2, so of course it is inconsistent.

We use the normal equation ATAx̂ = AT b to find the vectors x̂ in the domain such that Ax̂ is as close to b
as possible, i.e. we are looking for x̂ such that Ax̂ is exactly the projection b̂ onto Col(A). The equation
ATAx̂ = AT b reads 4 2 2

2 2 0
2 0 2

 x̂ =

10
4
6


Solving the system gives 4 2 2 |10

2 2 0 | 4
2 0 2 | 6

 ∼
1 0 1 |3

1 1 0 |2
2 1 1 |5

 ∼
1 0 1 | 3

0 1 −1 | − 1
0 0 0 | 0


So x3 is a free variable, x2 = −1 + x3 and x1 = 3− x3, and so the solutions x̂ are all vectors of the form 3

−1
0

+ x3

−1
1
1


We didn’t get a unique solution x̂ because the columns of A were linearly dependent, and so A, and
therefore ATA, have non-zero null-space. Thus the system ATAx̂ = AT b can’t have unique solution. If you
don’t remember the conditions when the system has infinitely many solutions, then it’s too bad, you need
to review this stuff. But really, if v is non-zero, and s.t. Av = 0, then ATAv is also 0, and so for any
solution x̂0 of the system ATAx̂ = AT b, x̂0 + cv is again a solution, for any scalar c.

Problem 2. Describe all least square solutions of the system{
x+ y = 2

x+ y = 4

Solution:
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We do the same thing as before. First write the system of equations in the matrix form[
1 1
1 1

] [
x
y

]
=

[
2
4

]
The system is obviously inconsistent, so we run the least-squares process. The equation ATAx̂ = AT b in
this case reads [

2 2
2 2

]
x̂ =

[
6
6

]
Solving the system, you get that y is a free variable, and x = 3− y. In other words, the set of least-squares
solutions is given by the equation x+ y = 3, which if you look at the system, makes a lot of sense.
Note that here you also don’t have a unique solution x̂, by the same reason as in Problem 1.

Problem 3. Suppose for the matrix A you know the result of orthonormalization of its columns, obtained
by using Gramm-Schmidt. Use this data to obtain least-squares solution of the system Ax = b. The
numbers are as follows:

A =


1 −1
1 4
1 −1
1 4

 , Q =


1/2 −1/2
1/2 1/2
1/2 −1/2
1/2 1/2

 , b =


−1
6
5
7


Solution:
To find R, you can use the formula R = QTA. So R is

R =

[
1/2 1/2 1/2 1/2
−1/2 1/2 −1/2 1/2

]
1 −1
1 4
1 −1
1 4

 =

[
2 3
0 5

]

To find the least-squares solution x̂, we can use the formula x̂ = R−1QT b. So

x̂ =

[
2 3
0 5

]−1 [
1/2 1/2 1/2 1/2
−1/2 1/2 −1/2 1/2

]
−1
6
5
7

 =

[
29/10
9/10

]

Problem 4. Suppose you are observing some machine (I don’t know, say, a magic box), and after random
intervals of time this machine shows you a number1.
At the times

x1 = 1, x2 = 1.5, x3 = 2, x4 = 2.5, x5 = 3

(I agree, these four time intervals don’t seems that random) the machine produced the following numbers:

y1 = 1, y2 = 1.5, y3 = 2.5, y4 = 4, y5 = 5.5

You would like to predict what would be next, i.e. you are trying to model how the machine works2 .

Find the least-squares line y = β0 + β1x approximating the work of the machine. What is the length of the
error term (i.e. the length of the residual vector)?

Try to approximate work of this machine by a parabola y = β0 + β1x+ β2x
2 (i.e. assume that the data

(xi, yi) occurs along a parabola). Compute the length of the error term in this case. So which
approximation is better?
Solution:
Let’s first do approximation by the line y = β0 + β1x. Ideally, we would like this approximation to be
exact. I mean, we would like our line y = β0 + β1x to pass through all the data points (xi, yi), namely,
through (1, 1), (1.5, 1.5), (2, 2.5), (2.5, 4) and (3, 5.5). Passing through a point means that the point

1Since it is a magic box, let’s say it produces a rainbow in the sky, shaped as the number it outputs. If you prefer seeing
dark magic, let’s say the machine produces a number made of fire and blood of innocents. I don’t know how it would work, I
am not a magician.

2To motivate that, suppose if you guess what’s next, you will win a bonus. If you prefer dark magic, let’s say if you guess
what’s next, you will save a bunch of innocent innocents.
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satisfies the equation y = β0 + β1x. So ideally all of the following equations will be satisfied (ideally line
passes through all of the points): 

β0 + β1 · 1 = 1

β0 + β1 · 1.5 = 1.5

β0 + β1 · 2 = 2.5

β0 + β1 · 2.5 = 4

β0 + β1 · 3 = 5.5

Writing this system in the matrix form, you get
1 1
1 1.5
1 2
1 2.5
1 3


[
β0
β1

]
=


1

1.5
2.5
4

5.5


This system is inconsistent, which means that there is no line passing through all the data points. Not such
a big surprise. But we can find least-squares solution, which would be the “best possible” approximation.
In the previous notation,

A =


1 1
1 1.5
1 2
1 2.5
1 3

 , x̂ =

[
β0
β1

]
, b =


1

1.5
2.5
4

5.5


So you again have to solve the equations ATAx̂ = AT b, and x̂ =

[
β0
β1

]
will give you coefficients of the line

you are looking for. Notice that here you will have a unique solution x̂. I am not going to compute this.
Sorry...

The same idea for approximation by a parabola y = β0 + β1x+ β2x
2. Ideally, you would like parabola to go

through all the data points, i.e. all the points would satisfy the equation y = β0 + β1x+ β2x
2. This gives

β0 + β1 · 1 + β2 · 12 = 1

β0 + β1 · 1.5 + β2 · 1.52 = 1.5

β0 + β1 · 2 + β2 · 22 = 2.5

β0 + β1 · 2.5 + β2 · 2.52 = 4

β0 + β1 · 3 + β2 · 32 = 5.5

In the matrix form, you get 
1 1 12

1 1.5 1.52

1 2 22

1 2.5 2.52

1 3 32


β0β1
β2

 =


1

1.5
2.5
4

5.5


You do the same thing with least-squares again.

Problem 5. Define an inner product on P2 by

〈p, q〉 = p(−1)q(−1) + p(0)q(0) + p(1)q(1)

Compute 〈−2 + t+ 2t2, 3− 2t〉.
Compute the orthogonal projection of the polynomial 1 + t to the subspace spanned by
p = −2 + t+ 2t2, q = 3− 2t.
Solution:
Computing:

〈−2 + t+ 2t2, 3− 2t〉 = −1 · 5 + (−2) · 3 + 1 · 1 = −9

To orthogonalize {p = −2 + t+ 2t2, q = 3− 2t}, use Gramm-Schmidt. Take v1 = −2 + t+ 2t2, and compute

v2 = (3− 2t)− 〈3− 2t,−2 + t+ 2t2〉
〈−2 + t+ 2t2,−2 + t+ 2t2〉

(−2 + t+ 2t2) = (3− 2t) +
9

6
(−2 + t+ 2t2)
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So v2 = 3t2 − 1/2t. Ok, so now we’ve got orthogonal basis v1, v2 of Span(p, q). Now you use the projection
formula

projW (1 + t) =
〈1 + t,−2 + t+ 2t2〉

〈−2 + t+ 2t2,−2 + t+ 2t2〉
(−2 + t+ 2t2) +

〈1 + t, 3t2 − 1/2t〉
〈3t2 − 1/2t, 3t2 − 1/2t〉

(3t2 − 1/2t)

Please, do the calculation.

Problem 6. Prove that for any n× n invertible matrix A, the formula 〈u, v〉 := (Au) · (Av) = (Au)T (Av)
defines an inner product on Rn.
Hint:
You just need to check that this operation satisfies the definition of the inner product.
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